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Abstract. Measuring the efficacy of ITS can be hard because there are many 
confounding factors: short, well-isolated studies suffer from insufficient interaction 
with the system, while longer studies may be affected by the students’  other learning 
activities. Coarse measurements such as pre- and post-testing are often inconclusive. 
Learning curves are an alternative tool: slope and fit of learning curves show the rate 
at which the student learns, and reveal how well the system model fits what the 
student is learning. The downside is that they are extremely sensitive to changes in 
the system’s setup, which arguably makes them useless for comparing different 
tutors. We describe these problems in detail and our experiences with them. We also 
suggest some other ways of using learning curves that may be more useful for 
making such comparisons. 

1 Introduction 

Analysing adaptive educational systems such as Intelligent Tutoring Systems (ITS) is hard 
because the students’  interaction with the system is but one small facet of their education 
experience. Pre- and post-test comparisons provide a rigorous means of comparing two 
systems, but they require large numbers of students and a sufficiently long learning period. 
The latter confounds the results unless it can be guaranteed that the students do not 
undertake any relevant learning outside the system being measured. Further, such 
experiments can only make comparisons at a high level: when fine-tuning parts of an 
educational system (such as the domain model), a large number of studies may need to be 
performed. In our research we have explored using a more objective measure of domain 
model performance, namely learning curves, to see if we can predict what changes could be 
made to improve student performance, including at the level of individual rules, or sets of 
rules. This often involves comparing disparate systems. In particular, we are interested in 
methods for comparing systems that work for small, short studies, so that we can propose, 
implement, test and refine improvements to our systems as rapidly as possible to make them 
maximally effective. The use of learning curves appears attractive in this regard. 

Researchers use numerous methods to try to evaluate educational systems. Pre- and 
post-testing is commonly tried, but the results are often inconclusive. Often other 
differences are found in how students interacted with the system, but they appear to have 
been too little to give a clear test outcome. Ainsworth [1] failed to find significant pre-/post-
test differences between REDEEM and CBT, but did find differences in certain situations. 
Similarly, Uresti and duBoulay [8] use pre-/post-testing to determine the efficacy of their 
learner companion across a variety of variables. They find no significant difference in 
learning outcome, but do find differences in measurements of usage within the tool. 



Suraweera and Mitrovic [7] found significant differences between using their ITS 
(KERMIT) versus no tutor. 

Because of the lack of clear results, researchers often measure other aspects of their 
systems to try to find differences in behaviour. However, these do not always measure 
learning performance specifically. Uresti and duBoulay measured the amount their 
“ learning companion”  was taught by the student during the session, which is arguably  (but 
not explicitly) linked to improved learning. Walker et al [9] performed post-hoc analysis of 
the predictive ability of their collaborative information filter (which measures how well it 
chooses material), but they do not measure the effect on learning. Zapata and Greer [10] 
evaluated their inspectable Bayesian student modelling method by observation of the 
actions students performed and their interactions with the system, but again this does not 
measure changes in learning performance. Finally, many studies include the use of 
questionnaires to analyse student attitudes towards the system. 

The use of learning curves attempts to bridge this gap by measuring learning activity 
within the system. As well as showing how well a particular system supports learning, they 
have the potential to allow quantitative comparisons between disparate systems. However, 
there are problems with such comparisons that need to be overcome. It is hoped that a better 
understanding of these curves and their limitations will add to the range of evaluative tools 
at our disposal. 

Section 2 describes the use of learning curves for measuring ITS performance. We then 
describe the specific problems with comparing systems in Section 3, and examine some 
possible solutions, followed by a discussion in Section 4. Finally, we present our 
conclusions in Section 5. 

 

2 Learning Curves 

Learning curves plot the performance of students with respect to some measure of their 
ability over time. In the case of ITS, the standard approach is to measure the proportion of 
knowledge elements in the domain model applied by the student that have been used 
incorrectly, or the “error rate” . Alternatives exist, such as the number of attempts taken to 
correct a particular type of error. Time is generally represented by the number of occasions 
the knowledge element has been used. This in turn may be determined in a variety of ways: 
for example, it may represent each new problem the student attempted that was relevant to 
this knowledge element, on the grounds that repeated attempts within a single problem are 
benefiting from the user having been given feedback about that particular circumstance, 
hence they may improve from one attempt to the next by simply carrying out the 
suggestions in the feedback without learning from them. If the student is learning the 
knowledge elements being measured, the learning curve will follow a so-called “power law 
of practise”  [6]. Evidence of such a curve indicates that the student is learning the 
knowledge elements, or, conversely, that the elements represent what the student is 
learning: a poor power law fit suggests a deficient domain model. Therefore, when 
comparing two models we might argue that the model showing better power law fit is 
somehow superior.  

The formula for a power law is: 
 

BAxY −=  (1) 

 
The constant A represents the Y axis intercept, which for learning curves is the error rate at 
x=1, or the error rate prior to any practise. B depicts the power law slope, equivalent to the 



linear slope when the data is plotted using a log-log axis. This indicates the steepness of the 
curve, and hence the speed with which the student is learning the material. Finally, the fit of 
the power law to the data is measured. All of these may be used to compare two different 
approaches to determine which is better.  

Data for learning curves is usually obtained post-hoc from student logs. For each 
student, a trace is generated for each knowledge element indicating the degree to which the 
student has correctly applied it. This may be a continuous value or simply “satisfied”  or 
“violated” . Data values for a single knowledge element for a single student are unlikely to 
produce a smooth power law; they simply represent too little data. However, the data can be 
aggregated in several ways to represent useful summaries: data can be grouped for all 
students by knowledge element (to compare individual elements for efficacy), by student 
over all elements (to compare students) or over both for comparing different systems (e.g. 
two different domain models). The power law fit and slopes can then be compared. Fig. 1. 
illustrates this: the two curves represent the learning histories for two populations using 
different variants of the same ITS (SQL-Tutor [5]). The curve has been limited to the first 
10 problems for which each constraint is relevant. This is necessary because aggregated 
learning curves degrade over time because the number of averaged data points decreases. 
Both curves exhibit a similar degree of fit, and their exponential slopes are similar. 
However, the Y asymptotes are markedly different, with the experimental group exhibiting 
more than double the initial error rate of the control group. 

 

3 Problems with Comparing Models 

Whilst it appears that learning curves can be compared with one another, there are several 
issues that call this practise into question. When comparing two different domain models, 
the power law parameters of fit and slope may be affected by incidental differences that 
arguably do not affect the quality of the model. These are now explored. 
 

3.1 Fit versus Data Size 

The quality of a power law tends to increase with data set size. A larger domain model is 
therefore likely to exhibit a better fit than a smaller one, even if it does not teach the student 
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Fig. 1. Learning curves for two variants of SQL-Tutor 



any better. For example, Koedinger and Mathan [3] compared learning outcomes associated 
with two types of feedback in the context of a spreadsheet tutor (an example of a cognitive 
tutor [2]).  In the Expert version of the tutor, students were given corrective feedback as 
soon as they deviated from an efficient solution path. In the Intelligent Novice version, 
students were allowed to make errors; feedback was structured to guide students through 
error detection and correction activities. A learning curve analysis was performed to 
determine whether students in one condition acquired knowledge in a form that would 
generalize more broadly across problems. The tutor provided opportunities to practice six 
types of problems. A shallow mastery of the domain would result in the acquisition of a 
unique rule for each type of problem. A deeper understanding of domain principles would 
allow students to see the common abstract structure in problems that may seem superficially 
different. Consequently, students would acquire a smaller set of rules that would generalize 
across multiple problems. In the case of the spreadsheet tutor it was possible to use a set of 
four rules to solve the six types of problems represented in the tutor.  

Two plots were created (Fig. 2), each with a different assumption about the underlying 
encoding. One plot assumed a unique rule associated with each of the six types of problems 
represented in the tutor. Thus, with each iteration through the six types of problems, there 
was a single opportunity to apply each production rule. In contrast, with a four skill, deep 
encoding, there were multiple opportunities to practice production rules that generalize 
across problems. Fitting power law curves to data plotted with these alternative 
assumptions about the underlying skill encoding might determine whether or not students 
were acquiring a skill encoding that would generalize well across problems.  

Both graphs strongly suggest that the “ intelligent novice”  system is considerably better 
than the “expert”  version – both fit and slope are considerably higher for this variant. 
However, the difference between the six- and four-skill models is not so clear. For both the 
expert and novice systems, the slope is higher for the four-skill model, suggesting more 
learning took place: this is particularly true for the “expert”  system. However, in both cases 
the fit decreases, and again this is more marked in the “expert”  system. At first glance these 
observations appear contradictory: learning is improved but quality of the model (as defined 
by fit) is lower. However, the four-skill model has 33% fewer knowledge elements than the 
original model, so we would expect the fit to degrade. This means we are unable to make 
comparisons based on fit in this case. Further, the comparisons of slope now arguably also 
become dubious. This latter concern could be overcome by plotting individual student 
curves and testing for a statistically significant difference in the average slopes, as described 
in Section 3.2. 
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Fig. 2. Learning curves for six- versus four-skill models of the Excel tutor. 



3.2 Initial versus Exponential slope 

A serious issue with the use of power law slope is that it is highly sensitive to changes in 
the other parameters of the curve, particularly the Y axis intercept. In [4], we compared two 
versions of SQL-Tutor that had different problem sets and selection strategies. Fig. 3 shows 
the learning curves for the two systems trialled on samples of 12 (control) and 14 
(experiment) University students. The two curves have similar fit and slope, which might 
lead us to conclude there is little difference in performance. However, the raw reduction in 
error suggests otherwise: between x=1 and x=5, the experimental group have reduced their 
error rate by 0.12, whereas the control group has only improved by 0.7, or about half. 

The problem is that power law slope is affected by scale. Fig. 4 illustrates what happens 
if we modify the scale of a curve by multiplying each data point by two. Although this now 
represents twice the error reduction over time, the exponential slope is virtually unchanged. 
Further, adding a constant to the same data reduces the exponential slope considerably, 
even though the net learning is the same. In the case of our study, we were measuring 
differences caused by an improved problem selection strategy: if the new strategy is better, 
it should cause the student to learn a greater volume of new concepts at a time. The power 
law slope does not measure this. However, the Y axis intercept does reflect this difference, 
because it measures the size of the initial error rate. We argued therefore that by comparing 
the slope of the curve at x=1, we are measuring the reduction in error at the beginning of the 
curve, which represents how much the student is learning in absolute terms. For the graphs 
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Fig. 3. Two variants of SQL-Tutor with different domain models 

Y'=Y

y = 0.1645x-0.3094

R2 = 0.8639

Y'=Y+0.5

y = 0.6641x-0.0648

R2 = 0.8622

Y'=2Y

y = 0.3291x-0.3094

R2 = 0.8639

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5

Times relevant

P
ro

p
o

rt
io

n
 v

io
la

te
d

 
Fig. 4. Scale effects on learning curve slope 



in Fig. 4 this gives initial slopes of 0.12 for the experimental group and 0.06 for the control 
group, which correlates with the overall gain for x=5. The advantage of using initial slope 
rather than simply calculating the gain directly is that the former is using the best fit curve, 
which averages out errors across the graph, while the latter is a point calculation and is 
therefore more sensitive to error. 

The fact that we have averaged the results across both all knowledge elements and 
students (in a sample group) may raise questions about the importance of the result. This is 
measured by plotting curves for individual students, calculating the learning rates and 
comparing the means for the two populations using an independent samples T-test. Fig. 5 
shows examples of individual student curves. In general the quality of curves is poor 
because of the low volume of data, although some students exhibit high-quality curves. We 
have noticed a positive correlation between curve fit and slope. For the experiment 
described this yielded similar results to the averaged curves (initial learning rate = 0.16 for 
the experimental group and 0.07 for the control group). Further, the T-test indicated that 
this result was significant (p<0.01). We can therefore be confident that the experimental 
group exhibited faster learning of the domain model. 

 

3.3 Early versus absolute learning 

When evaluating learning curves, we assume that the power law of practise holds, and that 
the students’  error rate will therefore trend towards zero errors in a negative exponential 
curve. However, there are arguably two power laws superimposed: the first is caused by 
simple practice, and should eventually trend to zero, although this may take a very long 
time. The second is caused by the feedback the system is giving: as long as this feedback is 
effective the student will improve, probably following a power law. However, we do not 
know how the effect of the feedback will vary with time: if it becomes less effective, the 
overall curve will “ flatten” , and thus deviate from a power curve. Even if the effect of 
feedback is constant (and therefore a curve based on feedback effect but not practice effect 
would trend to zero,) this curve may trend downwards much faster than the practice curve, 
and so will eventually intersect, and then be swamped by, the practise curve. The overall 
graph will therefore appear to be a power law trending to a Y asymptote greater than 0. 

Fig. 6 illustrates this point. In this study, we compared two different types of feedback in 
SQL-Tutor on samples of 23 (control) and 24 (experiment) second year University students. 
The control system presented the student with the standard (low-level) feedback, while the 
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Fig. 5. Examples of individual student learning curves 



experimental system grouped several related knowledge elements together, and gave 
feedback at a more abstract level.  

Over the length of the curves the amount of learning appears comparable between the 
two systems. However, the absolute gain for the first two times the feedback was given (i.e. 
the difference in Y between x=1 and x=3) is different for the two systems: For the control 
group the gain is around 0.03, while for the experimental group it is 0.05. We also notice 
that the curve for the experimental group appears to abruptly flatten off after this, 
suggesting that the feedback is only effective for the first two times it is viewed; after that it 
no longer helps the student.  

We could use the initial learning rate again to measure the early gain, but this is unlikely 
to be useful because of the way the curve flattens off, and therefore deviates from the initial 
trend. (We could cut off the curve at x=3 but this is dubious since it is too few data points.) 
In this case we used the raw improvement as described in the previous paragraph. We 
obtained learning curves for individual students and performed a T-test on the value of 
error(t=3)-error(t=1) for each student. The results were similar to those from the aggregated 
graphs (mean error reduction = 0.058 for the experimental group and 0.035 for the control 
group), and the difference was significant (p<0.01). 

4 Discussion 

Section 3 illustrates some of the problems with comparing disparate systems using learning 
curves. These difficulties can be summarised into two main obstacles. First, changing the 
knowledge units being measured can affect the learning curves, even if there is no 
difference in learning. Conversely, learning differences may be masked by incidental 
effects. Consider, for example, two domain models that are identical, except that one of 
them includes a large number of trivially satisfied rules. For example, these rules might be 
useful in a different population, but turn out to be already known by the current students. 
These will have the effect of reducing the measured error rate, which leads to an increase in 
the exponential slope of the learning curve when compared to the model lacking these 
concepts, even though there is no improvement in learning. Further, it could be argued that 
this model is worse in the context of the current population. This could be alleviated by 
measuring the raw number of errors rather than the proportion of applied concepts that were 
incorrectly used, but such a measure would then depend on the overall size of the two 
systems being comparable, to say nothing of the number of concepts being applied at any 
one time. Thus a bias would appear towards more coarse-grained models. What is needed is 
some sort of normalisation of the curves. 
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Fig. 6. Comparison domain models with differing feedback granularity 



The second problem is that the curves depend on both the domain model and the 
problems being set, as illustrated in [4]: setting hard problems involving the appropriate 
concepts appears to lead to steeper curves. To compare two domain models only would 
therefore require that the exact same problems are set, but this raises the spectre of the 
sequence of questions being better suited to one or other model. 

There is also the question of what should be measured. With respect to fig. 6, it could be 
argued that the early differences in the curves are a detail only, and that overall learning is 
worse for the experimental group. However, the ideal behaviour of an education system’s 
feedback arguably does not follow a power law: in the perfect system, the students would 
learn all concepts perfectly after seeing the feedback once. Further, gains at any point in the 
curve indicate superior behaviour in a limited context. In our case, the results suggest we 
should use general feedback the first few times it is presented; if the student still has 
problems with a concept, we should switch to more specific feedback. This is an important 
finding that warrants further investigation. 

5 Conclusions 

We have shown that education systems can be compared by using learning curves to 
measure the speed with which students learn the underlying domain model. However, if the 
systems being compared have different domain models, such comparisons are fraught with 
problems because of scaling effects; some means of normalising the curves is necessary if 
such comparisons are to be valid. Until this happens they should be presented with caution 
and treated with some scepticism. However, if the domain model is the same in the two 
systems, they can be directly compared. 

Finally, we have not presented any empirical evidence that effects measured in learning 
curves translate into real differences in learning. Comparative studies using both learning 
curves and pre-/post-testing are needed to establish the relationship between learning curves 
and actual learning performance. 
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